Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model.
نویسندگان
چکیده
This paper proposes a novel method for fast 3D reconstructions of the scoliotic spine from two planar radiographs. The method uses a statistical model of the shape of the spine for computing the 3D reconstruction that best matches the user input (about 7 control points per radiograph). In addition, the spine was modelled as an articulated structure to take advantage of the dependencies between adjacent vertebrae in terms of location, orientation and shape. The accuracy of the method was assessed for a total of 30 patients with mild to severe scoliosis (Cobb angle [22°, 70°]) by comparison with a previous validated method. Reconstruction time was 90 s for mild patients, and 110 s for severe. Results show an accuracy of ∼0.5mm locating vertebrae, while orientation accuracy was up to 1.5° for all except axial rotation (3.3° on moderate and 4.4° on severe cases). Clinical indices presented no significant differences to the reference method (Wilcoxon test, p ≤ 0.05) on patients with moderate scoliosis. Significant differences were found for two of the five indices (p=0.03) on the severe cases, while errors remain within the inter-observer variability of the reference method. Comparison with state-of-the-art methods shows that the method proposed here generally achieves superior accuracy while requiring less reconstruction time, making it especially appealing for clinical routine use.
منابع مشابه
Fast 3D Reconstruction of the Spine Using User-Defined Splines and a Statistical Articulated Model
This paper proposes a method for rapidly reconstructing 3D models of the spine from two planar radiographs. For performing 3D reconstructions, users only have to identify on each radiograph a spline that represents the spine midline. Then, a statistical articulated model of the spine is deformed until it best fits these splines. The articulated model used on this method not only models vertebra...
متن کامل3D Biplanar Reconstruction of Scoliotic Vertebrae Using Statistical Models
This paper presents a new 3D reconstruction method of the scoliotic vertebrae of a spine, using two conventional radiographic views (postero-anterior and lateral), and a global prior knowledge on the geometrical structure of each vertebra. This geometrical knowledge is efficiently captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first ...
متن کامل3D reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approach
Rib cage 3D reconstruction is an important prerequisite for thoracic spine modelling, particularly for studies of the deformed thorax in adolescent idiopathic scoliosis. This study proposes a new method for rib cage 3D reconstruction from biplanar radiographs, using a statistical parametric model approach. Simplified parametric models were defined at the hierarchical levels of rib cage surface,...
متن کامل3D biplanar statistical reconstruction of scoliotic vertebrae.
A new 3D reconstruction method of scoliotic vertebrae of a spine, using two calibrated conventional radiographic images (postero-anterior and lateral), and a global prior knowledge on the geometrical structure of each vertebra is presented. This geometrical knowledge is efficiently captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first...
متن کاملA Study on Human Gaze Detection Based on 3D Eye Model
Robust fake iris detection p. 10 A study on fast Iris restoration based on focus checking p. 19 A spatio-temporal metric for dynamic mesh comparison p. 29 Facetoface : an isometric model for facial animation p. 38 Matching two-dimensional articulated shapes using generalized multidimensional scaling p. 48 Further developments in geometrical algorithms for ear biometrics p. 58 Composition of com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical engineering & physics
دوره 33 8 شماره
صفحات -
تاریخ انتشار 2011